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ABSTRACT
We present an e"cient method of calculating exact con#dence intervals for the hypergeometric parameter
representing the number of “successes,” or “special items,” in the population. The method inverts minimum-
width acceptance intervals after shifting them to make their endpoints nondecreasing while preserving
their level. The resulting set of con#dence intervals achieves minimum possible average size, and even in
comparison with con#dence sets not required to be intervals it attains the minimum possible cardinality
most of the time, and always within 1. The method compares favorably with existing methods not only in
the size of the intervals but also in the time required to compute them. The available R package hyperMCI
implements the proposed method.

ARTICLE HISTORY
Received May 2022
Accepted September 2022

KEYWORDS
Binary data analysis;
Estimation; Exact methods;
Inference; Quality control;
Sampling

1. Introduction

1.1. Summary of Our Approach

This article concerns exact con!dence intervals for the num-
ber M of “successes” in the hypergeometric distribution. Given
integers 0 < n ≤ N and 0 ≤ M ≤ N, a random variable X has
the hypergeometric distribution Hyper(M, n, N) if

PM(X = x) =
(M

x

)(N − M
n − x

)/ (N
n

)
(1)

for all integer values of x such that the quotient (1) is de!ned,
with PM(X = x) = 0 otherwise.

Our approach to constructing (1 − α)-con!dence intervals
for M based on X is by inverting tests of the hypotheses H :
M = M0, which we denote as H(M0), for M0 = 0, 1, . . . , N.
For testing H(M), we use acceptance intervals [aM , bM] that
maximize the acceptance probability PM(X ∈ [aM , bM]) among
all shortest possible level-α intervals, a property we call α max
optimal which is discussed in Section 2, along with a novel
method of shi"ing a set of α max optimal intervals so their
endpoints aM, bM form nondecreasing sequences. This guar-
antees that the con!dence sets that result from inversion are
intervals, which is our goal here. A"er obtaining and shi"ing
a set of α max optimal intervals, in Section 3 we discuss how to
further modify them to make them symmetrical, and discuss
the case M = N/2 when N is even, which needs separate
handling. Our proposed con!dence intervals are the inversion
of these symmetrical and monotonic acceptance intervals, and
Example 4.1 illustrates the process of starting with α max opti-
mal intervals, modifying them to make them symmetrical and
monotonic, and inverting them to yield con!dence intervals. In
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Section 4 we prove the size-optimality results for the con!dence
intervals that result from inversion. In Section 5 we present some
numerical examples and compare with two existing methods,
including the notable, recent method of Wang (2015). There we
also apply our method to an air quality dataset of particulate
matter concentration drawn at multiple sites in China.

1.2. Background

1.2.1. The Hypergeometric Distribution
The most common setting in which the hypergeometric dis-
tribution arises is when X counts the number of items with a
certain binary “special” property, sometimes called a “success,”
in a simple random sample (i.e., sampled uniformly without
replacement) of size n from a population of size N containing
M special items. But the hypergeometric arises in many other
ways not involving a simple random sample, such as the analysis
of a 2 × 2 contingency table using Fisher’s Exact Test, and
in other sampling schemes. Readers interested in other aspects
of the hypergeometric distribution are referred to Hald (1990)
for its history and naming, Keilson and Gerber (1971) for log-
concavity and other properties, and Chvátal (1979) and Skala
(2013) for exponential tail bounds, to name a few.

1.2.2. Exact Con!dence Intervals
For exact con!dence sets, there is much more literature on
the related problem of the Binomial success probability than
for the hypergeometric, beginning with Clopper and Pearson
(1934) who applied the method of pivoting the CDF to the
Binomial problem. Sterne’s (1954) method for the Binomial
inverts hypothesis tests with the p-value as the test statistic,
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and he observed that the resulting intervals are “sometimes
narrower” (Sterne 1954, p. 278) than the Clopper-Pearson inter-
vals. Sterne’s method can alternatively be described as invert-
ing acceptance intervals with maximal acceptance probability,
which is similar to the method we apply here to the hypergeo-
metric. Crow (1956) showed that Sterne’s (1954) method yields
intervals with minimal total (or average) width, but also pointed
out some “irregularities” in the method, such as occcasionally
producing nonintervals, or giving longer intervals for lower
con!dence levels based on the same data. Crow (1956) proposed
a modi!cation of Sterne’s method eliminating these irregular-
ities while maintaining minimal total width. Blyth and Still
(1983) proposed a further modi!cation of Sterne’s method giv-
ing intervals with more regular monotonic endpoint sequences
than Sterne’s and Crow’s, while also achieving minimal total
width. Blaker (2000, 2001) proposed an improvement of the
Clopper-Pearson method giving shorter intervals, nested by
con!dence level, by choosing a more e#cient partition of the
error probabilities than the “equal tails” approach of the earlier
method. The recent method of Schilling and Doi (2014) pro-
duces length-minimizing, exact intervals for the Binomial prob-
lem by shi"ing acceptance intervals to achieve monotonicity of
endpoints before inverting; this is similar to our approach to the
hypergeometric.

For the hypergeometric, pivoting the CDF was proposed by
Konijn (1973) and Buonaccorsi (1987), but length-optimality
was not addressed until Wang (2015), who proposed a compu-
tationally intensive method for both 1- and 2-sided intervals,
and proved that the 1- sided intervals were length-minimizing.
See Section 5 for a more detailed description and comparison of
these methods.

Casella and Berger (2002, p. 463) give a summary of
work on con!dence sets for some other discrete distributions.
One notable example is Crow and Gardner’s (1959) for the
Poisson mean, a method similar to Crow’s (1956) for the
binomial.

1.3. Additional Notation

Throughout the article we treat the positive integers n and
N, and the desired con!dence level 1 − α ∈ (0, 1), as !xed
quantities, known to the statistician, and inference centers on
the unknown value of M. Since the parameter M of interest is an
integer, the intervals we consider are actually sets of consecutive
integers, which we denote by [a, b] but actually mean {a, a +
1, . . . , b}. For an arbitrary set A we let PM(A) denote PM(X ∈ A)

where X ∼ Hyper(M, n, N), which X will denote throughout
unless otherwise speci!ed. For a scalar x we let PM(x) denote
PM(X = x). It is not hard to see from (1) that PM(X = x) is
nonzero if and only if

xmin := max{0, M + n − N} ≤ x ≤ min{M, n} =: xmax. (2)

We let &y' denote the largest integer ≤ y and (y) the smallest
integer ≥ y. For sets A, B let A \ B = {a ∈ A : a /∈ B} denote
the set di$erence and |A| denote set cardinality, for example,
|[a, b]| = b−a+1 for integers a ≤ b. For a nonnegative integer
j we let [j] = {0, 1, . . . , j}.

2. α Max Optimal Acceptance Sets and Modifying
Intervals for Monotonicity

In this section we establish properties of acceptance intervals
that will guarantee that they still enjoy size optimality when they
are appropriately shi"ed to make their endpoints monotonic.
The next de!nition makes this precise, and we call the property
α max optimal. Theorem 2.1 shows how to modify any set of
α max optimal acceptance intervals to produce intervals whose
endpoints aM, bM are nondecreasing in M, thus, producing
con!dence intervals upon inversion rather than non-interval
con!dence sets; see also Section 4. It is not di#cult to construct
α max optimal acceptance intervals, and a simple and straight-
forward algorithm to do so is given in Algorithm S.1 in the
supplementary materials, where we prove that it produces α max
optimal intervals in Lemma S.2.1.

For the next de!nition we consider more general acceptance
sets (not necessarily intervals): A level-α acceptance set for H(M)
is any subset SM ⊆ [n] such that

PM(SM) ≥ 1 − α.

De!nition 2.1. Fix n, N, and α ∈ (0, 1).

1. Given M ∈ [N], a subset S ⊆ [n] is α optimal for M if
PM(S) ≥ 1 − α and PM(S∗) < 1 − α whenever S∗ ⊆ [n]
with |S∗| < |S|. A collection {SM : M ∈ M}, M ⊆ [N], is
α optimal (for M) if, for all M ∈ M, SM is α optimal for M.

2. Given M ∈ [N], a subset S ⊆ [n] is PM-maximizing if
all elements of S have positive PM-probability and PM(S) ≥
PM(S∗) whenever |S∗| = |S|. A collection {SM : M ∈
M}, M ⊆ [N], is PM-maximizing if, for all M ∈ M, SM
is PM-maximizing.

3. A collection {SM : M ∈ M}, M ⊆ [N], is α max optimal
(for M) if it is α optimal and PM-maximizing.

The link between the more general probability-maximizing
sets in the de!nition, and intervals, is the remarkable fact that,
for the hypergeometric distribution, probability-maximizing
sets are always intervals. This result is recorded and proved
as Proposition S.1.1 in the supplementary materials. That fact
underlies our main result concerning α max optimal acceptance
intervals in Theorem 2.1, that they can always be modi!ed in
order to make both sequences of endpoints nondecreasing in M
while still being α optimal.

Theorem 2.1. Fix n, N, α ∈ (0, 1). Let M ⊆ [N] be an arbitrary
set of consecutive integers, and {[aM , bM] : M ∈ M} a set of α

max optimal acceptance intervals. For M ∈ M de!ne

aM = max
M′≤M

aM′ and bM = min
M′≥M

bM′ . (3)

Finally, de!ne

Ma = {M ∈ M : aM < aM} and
Mb = {M ∈ M : bM > bM}. (4)

Then the following hold.

1. The sets Ma and Mb are disjoint.
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Figure 1. An illustration of the shifting process in Theorem 2.1. In the left panel the lower endpoints of two intervals with M ∈ Ma are adjusted up; in the right panel
three intervals with M ∈ Mb are adjusted down.

2. The adjusted intervals

[aadj
M , badj

M ] :=






[aM , bM + (aM − aM)], M ∈ Ma
[aM − (bM − bM), bM], M ∈ Mb
[aM , bM], all other M ∈ M,

(5)
are α optimal and have nondecreasing endpoint sequences.

The proof of the theorem and auxiliary results are given
in Section S.3 of the supplementary materials. The process in
the theorem of beginning with α max optimal intervals and
shi"ing them to produce the monotonic, adjusted intervals (5)
is illustrated in Figure 1.

3. α Optimal, Symmetrical, Nondecreasing
Acceptance Intervals

3.1. Initial Modi!cation of α Max Optimal Intervals

A set of acceptance intervals {[aM , bM] : M ∈ [N]} is sym-
metrical if the intervals are equivariant with respect to the
re%ections M .→ N − M, [aM , bM] .→ [n − bM , n − aM]. That
is, if

[aN−M , bN−M] = [n − bM , n − aM] for all M ∈ [N]. (6)

This can equivalently be stated as the intervals [aM , bN−M], M ∈
[N], all having midpoint n/2, or having endpoints summing
to n. We seek symmetrical acceptance intervals because they
will result in symmetrical con!dence intervals (de!ned below
analogously to (6)) upon inversion in Section 4.

Let

{[aM , bM] : M ∈ [&N/2']} (7)

be α max optimal acceptance intervals, such as those produced
by Algorithm S.1, and

{[aadj
M , badj

M ] : M ∈ [&N/2']} (8)

the result of applying Theorem 2.1 to these intervals. One way
to expand (8) to a full set M ∈ [N] of symmetric intervals is
to de!ne [aadj

M , badj
M ] for M > &N/2' as the re%ection of the

intervals (8) across n/2. This is guaranteed to achieve symmetry
everywhere except possibly at M = N/2 when N is even and

[aadj
N/2, badj

N/2] is not symmetric about n/2. This is the strategy
taken in Theorem 3.1, with the M = N/2 interval taken to
be (9), and the resulting intervals are α optimal, symmetrical,
and have nondecreasing endpoint sequences. Algorithm S.2
in the supplementary materials produces the result of apply-
ing Theorem 3.1 to α max optimal intervals, which could be
those produced by Algorithm S.1 or any other α max optimal
intervals (7).

3.2. Re"ection and Modi!cation at N/2

Starting with a set of α max optimal intervals {[aM , bM] : M ∈
[&N/2']} we will now de!ne a new set of intervals {[a∗

M , b∗
M] :

M ∈ [N]} by (i) applying the adjustments in Theorem 2.1, (ii)
re%ecting across n/2 to obtain symmetrical intervals for M >

&N/2', and (iii) if N is even setting [a∗
N/2, b∗

N/2] to be the interval

[hα/2, n − hα/2], where
hα/2 = max

{
x ∈ [n] : PN/2(X < x) ≤ α/2

}
. (9)

The next theorem establishes that the resulting intervals are
α optimal, symmetrical, and have nondecreasing endpoint
sequences.

Theorem 3.1. Given a set of α max optimal intervals {[aM , bM] :
M ∈ [&N/2']}, let {[aadj

M , badj
M ] : M ∈ [&N/2']} denote the result

of applying Theorem 2.1, and

[a∗
M , b∗

M]=






[aadj
M , badj

M ], for M = 0, 1, . . . , (N/2) − 1;
[n − badj

N−M , n − aadj
N−M], for M = &N/2' + 1, . . . , N;

[hα/2, n − hα/2], for M = N/2 if N is even.
(10)

Then A∗ := {[a∗
M , b∗

M] : M ∈ [N]} are level-α, symmetrical,
have nondecreasing endpoint sequences, and are size-optimal
except possibly for M = N/2 when N is even; in this case,
[a∗

N/2, b∗
N/2] is size-optimal unless [a∗

N/2, b∗
N/2 −1] has probabil-

ity 1 − α or greater, in which case [a∗
N/2, b∗

N/2 − 1] is α optimal
and A∗ is larger by one in total size than an α optimal collection.
In any case, A∗ is α optimal among symmetrical collections.

The proof of the theorem is in Section S.4 of the supplemen-
tary materials.
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Note that if N is odd then the !rst two cases of (10) cover
all M ∈ [N]. When N is even, the M = N/2 interval (9) is
clearly the smallest symmetrical level-α acceptance interval for
H(N/2), and is α optimal. Also, we have hα/2 ≤ n/2 since

PN/2(X < &n/2'+1) = PN/2(X ≤ &n/2') ≥ 1/2 > α/2. (11)

Finally, it is not necessary to use special calculations to get
hα/2 since it is easily obtained from an α max optimal interval
[aN/2, bN/2] by hα/2 = min{aN/2, n − bN/2}. Note that if
[aN/2, bN/2] is already symmetrical, then (9) is the same interval.

4. Optimal Symmetrical Con!dence Intervals

4.1. Con!dence and Acceptance Sets

For a set S let 2S denote the power set of S , that is, the set of
all subsets of S . A con!dence set with con!dence level 1 − α is
a function C : [n] → 2[N] such that the coverage probability
satis!es PM(M ∈ C(X)) ≥ 1 − α for all M ∈ [N]. For short,
we refer to such a C as a (1 − α)-con!dence set. If a con!dence
set C is interval-valued (i.e., for all x ∈ [n], C(x) is an interval)
we call it a con!dence interval. A con!dence set C is symmetrical
if

C(x) = N − C(n − x) for all x ∈ [n]. (12)

Here, for a set S , the notation N − S means {N − s : s ∈ S}.
Symmetry (12) is an equivariance condition requiring that the
con!dence set is re%ected about N/2 when the data is re%ected
about n/2. See also Section 5 for how this de!nition compares
with the regularity conditions of Wang (2015).

Similarly, we shall denote a level-α acceptance set by a func-
tion A : [N] → 2[n] such that PM(X ∈ A(M)) ≥ 1 − α

for all M ∈ [N], and call an interval-valued (i.e., for all M ∈
[N], A(M) is an interval) acceptance set an acceptance interval
and write A(M) = [aM , bM], or similar. Note that whereas
above we referred to an expression like (7) as a set of acceptance
intervals, we will now call it an acceptance interval (singular).
This is to coincide with our terminology for a con!dence set, as
well as avoid cumbersome phrases like “a set of acceptance sets.”

We also need to generalize the concept of symmetry from
(6) to handle general sets, so we say that an acceptance set A
is symmetrical if A(M) = n − A(N − M) for all M ∈ [N].
This says that the set is equivariant with respect to re%ections
M .→ N − M, and specializes to (6) for intervals.

4.2. Inverted Con!dence Sets

We will construct con!dence sets that are inversions of accep-
tance sets, and vice-versa. If A is a level-α acceptance set, then

CA(x) = {M ∈ [N] : x ∈ A(M)} (13)

is a (1 − α)-con!dence set. Conversely, given a (1 − α)-
con!dence set C, AC(M) = {x ∈ [n] : M ∈ C(x)} is a
level-α acceptance set; see, for example, (Rice 2007, chap. 9.3).
Moreover, CAC = C and ACA = A, which are immediate from
the de!nitions. However, neither A nor C being interval-valued
guarantees that its inversion is.

We will evaluate con!dence and acceptance sets by their total
size, which we de!ne as the sum of the cardinalities of each set:

Recalling that | · | denotes set cardinality, de!ne the total size of
acceptance and con!dence sets to be

|A| =
N∑

M=0
|A(M)| and |C| =

n∑

x=0
|C(x)|.

If A(M) = [aM , bM] is an acceptance interval, then

|A| =
N∑

M=0
|[aM , bM]| =

N∑

M=0
(bM − aM + 1),

and similarly for a con!dence interval C.
Lemma 4.1 records some basic facts about inverted con!-

dence sets, and is proved in Section S.6 of the supplementary
materials.

Lemma 4.1. Let A be an acceptance set. Then the following
hold.

1.

|CA| = |A|. (14)

2. CA is symmetrical if and only if A is symmetrical.
3. If, in addition, A(M) = [aM , bM] is interval-valued and the

endpoint sequences {aM} and {bM} are nondecreasing, then
CA is interval-valued.

4.3. Size Optimality

We say that a con!dence set C is size-optimal among a collection
of con!dence sets if it achieves the minimum total size in that
collection. The results in this section establish size-optimality
of C∗ = CA∗ , where A∗ = {[a∗

M , b∗
M] : M ∈ [N]} denotes the

result of applying Theorem 3.1 to any α max optimal acceptance
intervals {[aM , bM] : M ∈ [N]}. Thus, A∗ could be the intervals
given by Algorithm S.2, or the result of starting with any other
α max optimal intervals. Whatever the choice of A∗, note that
C∗ is a symmetrical, (1 − α)-con!dence interval by Lemma 4.1.

Before discussing the optimality of C∗ in Theorems 4.1 and
4.2, we give a short example of its construction, starting with
α max optimal acceptance intervals, their modi!cation, and
inversion to produce C∗.

Example 4.1. Take N = 23, n = 5, and α = 0.54, chosen only
for the sake of example. The !rst few α max optimal acceptance
intervals produced by Algorithm S.1 are

[aM , bM] =






{0}, M = 0, 1, 2, 3
{1}, M = 4
[0, 1], M = 5
[1, 2], M = 6, 7, 8, 9,

(15)

and satisfy aM ≥ 3 for M ≥ 10. Note the violation of
monotonicity in the lower endpoints at a4 = 1 > 0 = a5.
Applying Theorem 3.1 to these intervals therefore shi"s up the
M = 5 interval yielding A∗(5) = [1, 2], with A∗(M) unchanged
for the other M in (15). Then the !rst three con!dence intervals
resulting from the inversion of A∗ are C∗(0) = [0, 3], C∗(1) =
[4, 9], and C∗(2) = [5, 9].
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Theorems 4.1 and 4.2, which follow, are the main results of
the article. Theorem 4.1 is the more powerful of the two in that
it gives wide conditions under which C∗ is size-optimal among
symmetrical con!dence sets (not just intervals) and shows that,
even in the worst case, the total size |C∗| is at most 1 point
larger than the optimal set. Theorem 4.2 specializes to intervals
and gives conditions for optimality there. In particular, it shows
that C∗ is size-optimal among all symmetrical non-empty (i.e.,
C(x) 0= ∅ for all x) intervals, which are usually preferred in
practice.

Theorem 4.1. Let C∗ be as de!ned above and CS the class of all
symmetrical, (1 − α)-con!dence sets. Then C∗ is size-optimal
in CS, that is,

|C∗| = min
C∈CS

|C|,

if either of the following holds:

1. n or N is odd;
2. n, N are even and there is no size-optimal C ∈ CS such that

|AC(N/2)| is even. If n, N, and |AC(N/2)| are all even for
some size-optimal C ∈ CS, then

|C∗| ≤ min
C∈CS

|C| + 1. (16)

In addition, C∗ is size-optimal among all C ∈ CS such that AC
are all intervals.

The proofs of Theorems 4.1 and 4.2 use some auxiliary
lemmas, stated and proved in Section S.6 of the supplementary
materials. See also Example 5.3 for an instance of C∗ failing to be
optimal as a con!dence set, under conditions satisfying part 2.

Proof of Theorem 4.1. First suppose N is odd, and let C ∈ CS
be arbitrary; we will show that |C∗| ≤ |C|. Since N/2 is not an
integer, by Lemma S.6.1 we have |A∗(M)| ≤ |AC(M)| for all
M ∈ [N] thus, using Lemma 4.1,

|C| = |AC | =
N∑

M=0
|AC(M)| ≥

N∑

M=0
|A∗(M)| = |A∗| = |C∗|,

(17)
as claimed.

Now suppose N is even and let C ∈ CS be size-optimal.
By Lemma S.6.1 we have |A∗(M)| ≤ |AC(M)| for all M ∈
[N] other than M = N/2. If n or |AC(N/2)| is odd, then by
Lemma S.6.2 there is an interval [a, n − a] such that n − 2a +
1 = |AC(N/2)| and PN/2([a, n − a]) ≥ PN/2(AC(N/2)). Since
A∗(N/2) = [a∗

N/2, b∗
N/2] = [a∗

N/2, n − a∗
N/2] is the shortest

symmetrical acceptance interval for M = N/2, we have

|A∗(N/2)| = b∗
N/2 − a∗

N/2 + 1 ≤ n − 2a + 1 = |AC(N/2)|.
This, with the above inequality for the M 0= N/2 cases, estab-
lishes (17) in this case.

The remaining case—when N, n, and |AC(N/2)| are all
even—is handled by Lemma S.6.3, recalling that C was size-
optimal to establish (16).

For the !nal statement in the theorem, for any such C, AC
is symmetrical and thus has total size at least |A∗|, so |C| =
|AC | ≥ |A∗| = |C∗|.

Theorem 4.2. Let C∗ be as de!ned above and CI the class of
all symmetrical, (1 − α)-con!dence intervals. Then C∗ is size-
optimal in CI , that is,

|C∗| = min
C∈CI

|C|,

if either of the following holds:

1. n or N is odd;
2. n, N are even and there is no size-optimal C ∈ CI such that

C(n/2) = ∅. (18)

A su#cient condition for C∗ to be size-optimal in this case is
that

α <

(N/2
n/2

)2
/ (N

n

)
. (19)

In particular, C∗ is size-optimal among all nonempty C ∈ CI
regardless of the parity of n, N.

We comment that the scenario (18) seems to be particularly
rare since C(n/2) is typically the widest con!dence interval.
Thus, even allowing empty intervals, Theorem 4.2 establishes
size optimality of C∗ among intervals for most intents and
purposes, and (16) holds in any case. However, it may be possible
to construct an adversarial example with that property.

Proof of Theorem 4.2. Part 1 is a consequence of Theorem 4.1
since CI ⊆ CS.

Assume N and n are even, and there is no size-optimal C
satisfying (18). Let C be any size-optimal interval and since
C(n/2) 0= ∅, there is some M ∈ C(n/2). Because C(n/2)

is symmetrical, N − M ∈ C(n/2), and because C(n/2) is an
interval, N/2 ∈ C(n/2) since it lies between M and N – M. This
implies that n/2 ∈ AC(N/2), which is symmetrical about n/2.
Using these facts,

|AC(N/2)| = 2|{x ∈ AC(N/2) | x < n/2}| + |{n/2}|
= 2|{x ∈ AC(N/2) | x < n/2}| + 1,

an odd number. We then have |C∗| ≤ |C| by Lemma S.6.3.
To see that (19) is su#cient, suppose there is a C with

C(n/2) = ∅. Then for M = N/2, we have

α ≥ PM(M 0∈ C(X)) ≥ PM(X = n/2) =
(N/2

n/2

)2
/ (N

n

)
.

5. Examples and Comparisons

In this section we show examples of our proposed method C∗

using Algorithm S.2 in the supplementary materials as the
acceptance interval A∗, and give some comparisons with other
methods. All calculations of our method were performed using
the R package hyperMCI, available at github.com/bartro"792/
hyper.

For comparisons we focus on exact methods with guaranteed
coverage probability. A standard method for producing a (1 −
α)-con!dence interval for M is the so-called method of pivoting
the CDF, giving CPiv(x) = [LPiv(x), UPiv(x)] where, for !xed
nonnegative α1 + α2 = α,

github.com/bartroff792/hyper
github.com/bartroff792/hyper
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LPiv(x) = min{M ∈ [N] : PM(X ≥ x) > α1},
UPiv(x) = max{M ∈ [N] : PM(X ≤ x) > α2}. (20)

Taking α1 = α2 = α/2 is a common choice, and all our calcu-
lations of CPiv below use this. See Buonaccorsi (1987), Casella
and Berger (2002, chap. 9), or Konijn (1973). This method
is alternatively called the quantile method and the method of
extreme tails.

Wang (2015) proposed a method producing a (1 − α)-
con!dence interval for M, which we denote by CW , that cycles
through the intervals CPiv(x), shrinking the intervals where
possible while checking that coverage probability is maintained.
The algorithm can require multiple passes through the intervals,
calculating the coverage probability for all M ∈ [N] multiple
times, and is therefore computationally intensive. We compare
the computational times of CW and C∗ in Examples 5.1 and 5.2.
All calculations of CW(x) were performed using that author’s R
code.

Although W. Wang proves that a 1-sided version of his algo-
rithm produces size-optimal intervals (among 1-sided inter-
vals), it is not claimed that CW is size-optimal. Since CW pro-
duces non-empty intervals we know that |C∗| ≤ |CW | by The-
orem 4.2. In the following example we compare C∗ with CW in
terms of both size and computational time, and indeed exhibit a
setting where |C∗| < |CW |. We also note that the regularity con-
ditions assumed in W. Wang’s results are slightly more restrictive
than our symmetry condition (12), which W. Wang calls a
“natural restriction,” by including two additional requirements
that both sequences of endpoints of CW(x) be nondecreasing
in x, and any sub-interval of CW(x) must have con!dence level
strictly less than 1 − α. Our C∗ satis!es these additional prop-
erties, and see also Figure S.1 for an example of monotonicity
of C∗. However, we do not require them of the con!dence sets
considered so that our optimality results apply to a broader class.

Example 5.1. We compare C∗, CPiv, and CW in the setting α =
0.05, N = 500, and n = 10, 20, 30, . . . , 490. The C∗ intervals are
much shorter than the CPiv intervals in this setting, and Figure 2
shows the di$erences in size |CPiv|−|C∗| for n = 10, 20, . . . , 490
which are substantial; all the C∗ intervals are at least 200 points
shorter than their corresponding CPiv intervals, and some are as
many as 260 points shorter. These di$erences are also sizable
fractions of the largest possible range [0, N] = [0, 500].

The CW intervals are very similar to C∗ and so are not shown
in Figure 2. In fact, the sizes |CW | = |C∗| are exactly equal
for all values of n considered, except n = 100. The con!dence
intervals for this case are given explicitly in Tables S.1–S.2 in
the supplementary materials. These tables show very similar, but
slightly di$erent intervals, with neither method dominating the
other. For example, |C∗(0)| = |[0, 14]| < |[0, 16]| = |CW(0)|
and

|C∗(13)| = |[40, 102]| > |[40, 101]| = |CW(13)|. (21)
Totaling the sizes gives |C∗| = 7129 < 7131 = |CW |, showing
that the CW intervals are indeed nonoptimal. One property of
our method is that it does not necessarily producing intervals
that are sub-intervals of CPiv, which CW always does since it
begins with these intervals before iteratively shrinking them. For
example, in this setting CPiv(13) = [39, 101] which, by (21),
contains CW(13) but not C∗(13).

Figure 2. The di!erences in total size |CPiv| − |C∗|, for N = 500, α = 0.05, and
n = 10, 20, . . . , 490.

Figure 3. The computational time of the con"dence intervals CW and C∗ for N =
500, α = 0.05, and n = 10, 20, . . . , 490.

Figure 4. The computational time of the con"dence intervals CPiv and C∗ for N =
500, α = 0.05, and n = 10, 20, . . . , 490.

In addition to the total sizes, Tables S.1–S.2 also show the
computational times used by both methods, at the bottom of
each table. All times were computed using R’s proc.time()
function. Whereas C∗ took roughly 1/10th of a second (0.0019
min) to !ll the table, CW took more than 10 min. As men-
tioned above, this is due to the adjusting technique of CW
which requires repeated updating of intervals, whereas C∗ just
requires one pass through the acceptance intervals for adjust-
ment. Figure 3 gives a more complete comparison of compu-
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Figure 5. Coverage probability of C∗ and CPiv for N = 500, n = 100, and α = 0.05.

Figure 6. The computational time of the con"dence intervals CW and C∗ for N =
200, 400, . . . , 1000, and n = N/2.

tational times in this setting. The additional time required by
CW is sizable, even exceeding 25 min for values of n near the
middle of the range. A comparison of computational times of
CPiv and C∗ is shown in Figure 4, which shows that the times are
much faster overall compared to CW (the longest times being
less than 1/3 of a second), and comparable between the two
methods.

Figure 5 shows the coverage probability of C∗ and CPiv for
the n = 100 case as a function of M = 0, 1, . . . 500. The
coverage probability of CPiv is overall higher than that of C∗,
an undesirable property once it exceeds 1 − α. The coverage
probability of CW is very similar to that of C∗ in this setting,
and is shown in Figure S.2 of the supplementary materials.

Figure S.1 in the supplementary materials is a plot of the C∗

intervals for the n = 100 case.

Example 5.2. We compare the computational time of C∗ and CW
in the setting α = 0.05, N = 200, 400, . . . , 1000, and n = N/2.
The computational times of C∗ and CW are shown in Figure 6.
When N = 1000, n = 500 and α = 0.05, the computational time
for CW is 250 min while that of C∗ is 0.0111 min.

Example 5.3. In this example we show the necessity of part 2 of
Theorem 4.1. That is, we exhibit a setting with n, N, and A(N/2)

all even for a certain acceptance set A whose inversion C is size-
optimal with |C| = |C∗| − 1. Set N = 20, n = 6, and α = 0.6.

For M 0= N/2 = 10 de!ne A(M) = [a∗
M , b∗

M] to be the same
intervals given by Theorem 3.1 and inverted to create C∗, and
de!ne A(10) = {2, 4}. For all M 0= 10, A(M) is a level-α
interval, and A(10) is as well since

PM=10(2) = PM=10(4) = 0.244

to 3 decimal places, thus PM=10({2, 4}) > 0.4 = 1 −α. It can be
shown that A∗(10) = [2, 4], thus, the (noninterval) set A has 1
fewer point than A∗, so by (14) we have that |C| = |C∗| − 1.

Example 5.4 (Air quality data). In this example we apply our
con!dence interval C∗ to data collected by China’s Ministry of
Environmental Protection (MEP) and discussed by Liang et al.
(2016). The MEP collects data on particulate matter (PM2.5)
concentration, measured in µg/m3, of !ne inhalable particles
with diameters less than 2.5 micrometers. The U.S. Environ-
mental Protection Agency (2012) classi!es the air quality of a
given day as “hazardous” if the day’s 24-hour average PM2.5
measurement exceeds the set threshold 250.5. Liang et al. (2016)
analyzed the 2013–2015 MEP data and concluded that it was
consistent with measurements taken at nearby U.S. diplomatic
posts, the U.S. Embassy in Beijing and four U.S. Consulates
in other cities. However, a persistent problem with the MEP
data is a high degree of missing days. For a given year, if the
missing days are assumed to be missing at random with each
day of the year equally likely, then the number X of remaining
“hazardous” days, conditioned on the number n of remaining
days, follows a hypergeometric distribution with N = 365 and
unknown actual number M of annual hazardous days, to be
estimated as an indication of annual air quality. We focus on
the 2015 data from 3 MEP sites in Beijing: Dongsi, Dongsihuan,
and Nongzhanguan. For each of these sites, Table 1 shows the
number n of days with complete measurements, the observed
number x of days with complete measurements classi!ed as
hazardous, the point estimate Nx / n (with N = 365) of the
number M of annual hazardous days, and the 90% con!dence
interval C∗(x) for M, which are also plotted in Figure 7. The
point estimates from the MEP sites are similar to and surround
the estimate at the U.S. Embassy data, similar to the conclusions
drawn by Liang et al. (2016). But the con!dence intervals also
show that the MEP estimates are more variable, largely in the
direction of indicating worse air quality, with two out of three
upper con!dence limits being much larger for the MEP sites
than for the U.S. Embassy. For comparison, we note that the
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Table 1. For the Beijing air quality data (Liang et al. 2016), the number n of days
with complete measurements, the number x of days with complete measurements
classi"ed as hazardous, the point estimate Nx/n (to 1 decimal place) of the num-
ber M of annual hazardous days, and the 90% con"dence interval C∗(x) for M.

Site n x Nx / n 90% CI for M

Dongsi 292 16 20.0 [17, 24]
Dongsihuan 166 7 15.4 [10, 24]
Nongzhanguan 290 11 13.8 [11, 17]
U.S. Embassy 332 15 16.5 [15, 18]

Figure 7. The 90% con"dence intervalC∗(x) for the number M of annual hazardous
days at di!erent locations in Beijing.

intervals CW in this setting coincide with the intervals C∗ in
Table 1 and Figure 7, except for the Nongzhanguan data where
CW produces the shorter interval [12, 17].

6. Discussion

We have presented an e#cient method of computing exact
hypergeometric con!dence intervals. Compared to the standard
pivotal method, our method requires similar computational
time but produces much shorter intervals. Our method pro-
duces intervals with total size no larger than, and strictly smaller
than in some cases, the existing nearly optimal method of Wang
(2015), which is computationally much more costly than our
and the pivotal method. Therefore, we hope our method can
provide something near the “best of both worlds” for this prob-
lem in terms of computational time and interval size, at least for
two-sided intervals.

In practice there are many applications, such as quality
control, where one-sided con!dence intervals are desired. For
these the method of Wang (2015) provides optimal intervals.
On the other hand, there may be situations where two-sided
intervals are appropriate but the statistician prefers the error
probability on each side to be bounded by α/2. For example, if
the statistician wants the option to, post-hoc, use one or both
endpoints of the interval as a “one-sided” con!dence bound.
Our proposed method does not satisfy this property because it
would prevent size-optimality, which is our focus here, but in
this case the statistician can use the pivotal method (20) with
α1 = α2 = α/2.

The key to our method is the novel shi"ing of acceptance
intervals before inversion, developed in Sections 2 and 3. We
have observed in the numerical examples included in Section 5,
as well as extensive further computations not included in this

article, that the needed shi"s in Theorem 2.1 seem to never
exceed a single point. This is not needed in our theory but we
close by mentioning it as a tantalizing conjecture.

A similar approach to the one here of shi"ing optimal accep-
tance regions before inverting can be used to produce optimal
con!dence intervals for the hypergeometric population size N
when it is unknown, such as in capture-recapture problems
(Bailey 1951; Wittes 1972; Pollock et al. 1990). A forthcoming
work will cover this problem.

Supplementary Materials

Supplementary materials are available online and include proofs, auxiliary
results, and additional tables and !gures.
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